Rule-based Mamdani-type fuzzy modeling of skin permeability

نویسندگان

  • Deepak R. Keshwani
  • David D. Jones
  • George E. Meyer
  • Rhonda M. Brand
چکیده

Two Mamdani type fuzzy models (three inputs–one output and two inputs–one output) were developed to predict the permeability of compounds through human skin. The models were derived from multiple data sources including laboratory data, published data bases, published statistical models, and expert opinion. The inputs to the model include information about the compound (molecular weight and octonal–H2O partition coefficient) and the application temperature. One model included all three parameters as inputs and the other model only included information about the compound. The values for mole molecular weight ranged from 30 to 600 Da. The values for the log of the octonal–H2O partition coefficient ranged from –3.1 to 4.34. The values for the application temperature ranged from 22 to 39 8C. The predicted values of the log of permeability coefficient ranged from –5.5 to – 0.08. Each model was a collection of rules that express the relationship of each input to the permeability of the compound through human skin. The quality of the model was determined by comparing predicted and actual fuzzy classification and defuzzification of the predicted outputs to get crisp values for correlating estimates with published values. A modified form of the Hamming distance measure is proposed to compare predicted and actual fuzzy classification. An entropy measure is used to describe the ambiguity associated with the predicted fuzzy outputs. The three input model predicted over 70% of the test data within one-half of a fuzzy class of the published data. The two input model predicted over 40% of the test data within one-half of a fuzzy class of the published data. Comparison of the models show that the three input model exhibited less entropy than the two input model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers

A novel technique of designing application specific defuzzification strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzification approximator is validated by showing the convergence when approximating several existing defuzzification strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. T...

متن کامل

Type-2 Fuzzy Hybrid Expert System For Diagnosis Of Degenerative Disc Diseases

One-third of the people with an age over twenty have some signs of degenerated discs. However, in most of the patients the mere presence of degenerative discs is not a problem leading to pain, neurological compression, or other symptoms. This paper presents an interval type-2 fuzzy hybrid rule-based system to diagnose the abnormal degenerated discs where pain variables are represented by interv...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Thyroid disorder diagnosis based on Mamdani fuzzy inference system classifier

Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and  do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008